Gauge

Dalam beberapa kasus tekanan absolut tidak memiliki sejumlah daya tarik yang penting dalam pengertian tekanan. Gas atmosphere yang yang mengelilingi bumi ini memiliki tekanan, karena berat dari atmosphere tersebut, tekanan dipermukaan bumi kira-kira 14,7 psi, sebagaimana telah dicatat diatas. Jika sebuah wadah tertutup pada permukaan bumi diisi sebuah gas pada tekanan absolut 14,7 psi, kemudian keadaan tersebut diusahakan tidak ada tekanan efektif pada dinding-dinding dari container, sebab gas atmosphere berusaha melakukan tekanan yang sama dari luarnya. Pada kasus seperti ini, kondisi tersebut lebih tepat untuk penjabaran tekanan dalam keadaan relatif, sehingga dibandingkan dengan tekanan atmosphere. Ini dikenal dengan Tekanan Gauge, yang diberikan oleh persamaan:

Pg = Pabs – Pat

Dimana ;

Pg = Tekanan gauge

Pabs = Tekanan absolut

Pat = Tekanan atmosphere

Dalam system satuan di Inggris satuan psig dugunakan untuk satuan tekanan gauge.

 

Sumber:

http://www.elektro.undip.ac.id/sumardi/www/komponen/5_5.htm

 

 


Iklan

Kapilaritas

Kapilaritas disebabkan oleh interaksi molekul-molekul di dalam zat cair. Di dalam zat cair molekul-molekulnya dapat mengalami gaya adhesi dan kohesi.

Gaya kohesi adalah tarik-menarik antara molekul-molekul di dalam suatu zat cair sedangkan gaya adhesi adalah tarik menarik antara molekul dengan molekul lain yang tidak sejenis, yaitu bahan wadah di mana zat cair berada. Apabila adhesi lebih besar dari kohesi seperti pada air dengan permukaan gelas, air akan berinteraksi kuat dengan permukaan gelas sehingga air membasahi kaca dan juga permukaan atas cairan akan melengkung (cekung). Keadaan ini dapat menyebabkan cairan dapat naik ke atas oleh tegangan permukaan yang arahnya keatas sampai batas keseimbangan gaya ke atas dengan gaya berat cairan tercapai. Jadi air dapat naik keatas dalam suatu pipa kecil yang biasa disebut pipa kapiler. Inilah yang terjadi pada saat air naik dari tanah ke atas melalui tembok. Air dapat merembes ke atas melalui retakan tembok sehingga membasahi tembok.

Gejala alam kapilaritas ini memungkinkan kita menghitung tinggi kenaikan air dalam suatu pipa kapiler berbentuk silinder/tabung dengan jari-jari r.

Sumber:

http://aktifisika.wordpress.com/tag/kapilaritas/

 

Pengantar

Pernah melihat lilin ? mudah-mudahan pernah menggunakannya. Salah satu fenomena yang menarik dapat kita saksikan ketika lilin sedang bernyala. Bagian bawah dari sumbu lilin yang terbakar biasanya selalu basah oleh leleh lilin (di bagian sumbu). Adanya leleh lilin pada sumbu membuat lilin bisa bernyala dalam waktu yang lama. Btw, apa yang menyebabkan leleh lilin bisa bergerak ke atas menuju sumbu lilin yang terbakar ? fenomena yang sama bisa kita amati pada lampu minyak. Lampu minyak merupakan salah satu sumber penerangan ketika belum ada lampu listrik. Mungkin saat ini masih digunakan. Lampu minyak terdiri dari wadah yang berisi

bahan bakar (biasanya minyak tanah) dan sumbu. Sebagian sumbu dicelupkan dalam wadah yang berisi minyak tanah, sedangkan sebagian lagi dibungkus dalam pipa kecil. Pada ujung atas pipa tersebut, disisakan sebagian sumbu. Jika kita ingin menggunakan lampu minyak, maka sumbu yang terletak di ujung atas pipa kecil tersebut harus dibakar. Sumbu tersebut bisa menyala dalam waktu yang lama karena minyak tanah yang berada dalam wadah merembes ke atas, hingga mencapai ujung sumbu yang terbakar. Aneh ya, kok minyak tanah bisa merembes ke atas ?

Banyak hal menarik dalam kehidupan kita yang mirip dengan fenomena yang terjadi pada lilin dan lampu minyak. Seolah-olah cairan tersebut mempunyai kaki sehingga bisa bergerak ke atas. Apakah dirimu bisa menjelaskannya secara ilmiah ?

Salah satu konsep fisika yang bisa menjelaskan fenomena yang terjadi pada lilin, lampu minyak serta banyak fenomena terkait lainnya adalah Kapilaritas. Terus kapilaritas itu apa ? untuk memahami konsep Kapilaritas, pahami penjelasan berikut ini.

Gaya Kohesi dan Adhesi

Dirimu mungkin pernah mendengar istilah Kohesi dan Adhesi. Gaya Kohesi merupakan gaya tarik menarik antara molekul dalam zat yang sejenis, sedangkan gaya tarik menarik antara molekul zat yang tidak sejenis dinamakan Gaya Adhesi. Misalnya kita tuangkan air dalam sebuah gelas. Kohesi terjadi ketika molekul air saling tarik menarik, sedangkan adhesi terjadi ketika molekul air dan molekul gelas saling tarik menarik.

Sudut Kontak

Sebelum mempelajari konsep Kapilaritas, terlebih dahulu kita pahami bagaimana pengaruh gaya adhesi dan gaya kohesi bagi Kapilaritas. Misalnya kita tinjau cairan yang berada dalam sebuah gelas (lihat gambar di bawah). Ketika gaya kohesi molekul cairan lebih kuat daripada gaya adhesi (gaya tarik menarik antara molekul cairan dengan molekul gelas) maka permukaan cairan akan membentuk lengkungan ke atas. Contoh untuk kasus ini adalah ketika air berada dalam gelas. Biasanya dikatakan bahwa air membasahi permukaan gelas. Sebaliknya apabila gaya adhesi lebih kuat maka permukaan cairan akan melengkung ke bawah. Contohnya ketika air raksa berada di dalam gelas.

Sudut yang dibentuk oleh lengkungan itu dinamakan sudut kontak (teta). Ketika gaya kohesi cairan lebih besar daripada gaya adhesi, maka sudut kontak yang terbentuk umumnya lebih kecil dari 90o (gambar a). Sebaliknya, apabila gaya adhesi lebih besar daripada gaya kohesi cairan, maka sudut kontak yang terbentuk lebih besar dari 90o (gambar b). Gaya adhesi dan gaya kohesi secara teoritis sulit dihitung, tetapi sudut kontak dapat diukur. Apa hubungannya dengan kapilaritas ?

Konsep Kapilaritas

Seperti yang telah dijelaskan pada pokok bahasan Tegangan Permukaan, pada setiap permukaan cairan terdapat tegangan permukaan.

Apabila gaya kohesi cairan lebih besar dari gaya adhesi, maka permukaan cairan akan melengkung ke atas. Ketika kita memasukan tabung atau pipa tipis (pipa yang diameternya lebih kecil dari wadah), maka akan terbentuk bagian cairan yang lebih tinggi (Lihat digambar di bawah). Dengan kata lain, cairan yang ada dalam wadah naik melalui kolom pipa tersebut. Hal ini disebabkan karena gaya tegangan permukaan total sepanjang dinding tabung bekerja ke atas. Ketinggian maksimum yang dapat dicapai cairan adalah ketika gaya tegangan permukaan sama atau setara dengan berat cairan yang berada dalam pipa. Jadi, cairan hanya mampu naik hingga ketinggian di mana gaya tegangan permukaan seimbang dengan berat cairan yang ada dalam pipa.

Sebaliknya, jika gaya adhesi lebih besar daripada gaya kohesi cairan, maka permukaan cairan akan melengkung ke bawah. Ketika kita memasukan tabung atau pipa tipis (pipa yang diameternya lebih kecil dari wadah), maka akan terbentuk bagian cairan yang lebih rendah (lihat gambar di bawah).

Efek ini dikenal dengan julukan gerakan kapiler alias kapilaritas dan pipa tipis tersebut dinamakan pipa kapiler. Perlu diketahui bahwa pembuluh darah kita yang terkecil juga bisa disebut pipa kapiler, karena peredaran darah pada pembuluh darah yang kecil juga terjadi akibat adanya efek kapilaritas. Demikian juga fenomena naiknya leleh lilin atau minyak tanah melalui sumbu. Selain itu, kapilaritas juga diyakini berperan penting bagi perjalanan air dan zat bergizi dari akar ke daun melalui pembuluh xylem yang ukurannya sangat kecil. Bila tidak ada kapilaritas, permukaan tanah akan langsung mengering setelah turun hujan atau disirami air. Efek penting lainnya dari kapilartas adalah tertahannya air di celah-celah antara partikel tanah. Lumayan, bisa membantu para petani di kebun.

Persamaan Kapilaritas

Pada penjelasan sebelumnya, dikatakan bahwa ketinggian maksimum yang dapat dicapai cairan ketika cairan naik melalui pipa kapiler terjadi ketika gaya tegangan permukaan seimbang dengan berat cairan yang ada dalam pipa kapiler. Nah, bagaimana kita bisa menentukan ketinggian air yang naik melalui kolom pipa kapiler ? mau tidak mau, kita harus menggunakan persamaan :) rumus lagi, rumus lagi… Untuk membantu kita menurunkan persamaan, perhatikan gambar di bawah.

Tampak bahwa cairan naik pada kolom pipa kapiler yang memiliki jari-jari r hingga ketinggian h. Gaya yang berperan dalam menahan cairan pada ketinggian h adalah komponen gaya tegangan permukaan pada arah vertikal : F cos teta (bandingkan dengan gambar di bawah).

Bagian atas pipa kapiler terbuka sehingga terdapat tekanan atmosfir pada permukaan cairan. Panjang permukaan sentuh antara cairan dengan pipa adalah 2 phi r (keliling lingkaran). Dengan demikian, besarnya gaya tegangan permukaan komponen vertikal yang bekerja sepanjang permukaan kontak adalah :

Keterangan :

Apabila permukaan cairan yang melengkung ke atas diabaikan, maka volume cairan dalam pipa adalah :

Apabila komponen vertikal dari Gaya Tegangan Permukaan seimbang dengan berat kolom cairan dalam pipa kapiler, maka cairan tidak dapat naik lagi. Dengan kata lain, cairan akan mencapai ketinggian maksimum, apabila komponen vertikal dari gaya tegangan permukaan seimbang dengan berat cairan setinggi h. Komponen vertikal dari Gaya tegangan permukaan adalah :

Ketika cairan mencapai ketinggian maksimum (h), Komponen vertikal dari gaya tegangan permukaan harus sama dengan berat cairan yang ada dalam pipa kapiler. Secara matematis, ditulis :

 

Sumber:

http://www.infogue.com/viewstory/2009/07/02/kapilaritas_gudang_ilmu_fisika_gratis/?url=http://www.gurumuda.com/kapilaritas/

Bilangan Reynolds

Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskoslaminar dan turbulen. Namanya diambil dari Osborne Reynolds (18421912) yang mengusulkannya pada tahun 1883. (μ/L) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan ini digunakan untuk mengidentikasikan jenis aliran yang berbeda, misalnya
Bilangan Reynold merupakan salah satu bilangan tak berdimensi yang paling penting dalam mekanika fluida dan digunakan, seperti halnya dengan bilangan tak berdimensi lain, untuk memberikan kriteria untuk menentukan dynamic similitude. Jika dua pola aliran yang mirip secara geometris, mungkin pada fluida yang berbeda dan laju alir yang berbeda pula, memiliki nilai bilangan tak berdimensi yang relevan, keduanya disebut memiliki kemiripan dinamis.
Rumus bilangan Reynolds umumnya diberikan sebagai berikut:
 \mathit{Re} = {\rho v_{s} L\over \mu} = {v_{s} L\over \nu} =  \frac{\mbox{Gaya inersia}}{\mbox{Gaya viskos}}
dengan:
  • vs – kecepatan fluida,
  • L – panjang karakteristik,
  • μ – viskositas absolut fluida dinamis,
  • ν – viskositas kinematik fluida: ν = μ / ρ,
  • ρ – kerapatan (densitas) fluida.
Misalnya pada aliran dalam pipa, panjang karakteristik adalah diameter pipa, jika penampang pipa bulat, atau diameter hidraulik, untuk penampang tak bulat.
Sumber:

http://mekanika-fluida.blogspot.com/2010/11/bilangan-reynolds.html

Viskositas

Pengantar

Pernah lihat minyak pelumas ? Coba bandingkan oli dengan air. Manakah yang lebih kental ?  Tentunya oli yang lebih kental. Selanjutnya, mana yang lebih cair, minyak goreng lebih kental atau es teh ? Tentu minyak goreng yang lebih kental.

Pada kesempatan ini kita akan mempelajari kekentalan suatu fluida, baik zat gas maupun zat cair. Istilah kerennya viskositas. Viskositas = ukuran kekentalan fluida.

Konsep Viskositas

Fluida, baik zat cair maupun zat gas yang jenisnya berbeda memiliki tingkat kekentalan yang berbeda. Sirup biasanya lebih kental dari air. Atau air susu, minyak goreng, oli, darah, dll. Tingkat kekentalan setiap zat cair tersebut berbeda-beda.

Fluida yang lebih cair biasanya lebih mudah mengalir, contohnya air. Sebaliknya, fluida yang lebih kental lebih sulit mengalir, contohnya minyak goreng, oli, madu, dll. Semakin tinggi suhu zat cair, semakin kurang kental zat cair tersebut. Sebaliknya, semakin tinggi suhu suatu zat gas, semakin kental zat gas tersebut.

Koofisien Viskositas

Viskositas fluida dilambangkan dengan simbol η (baca : eta). Jadi tingkat kekentalan suatu fluida dinyatakan oleh koofisien viskositas fluida tersebut. Secara matematis, koofisien viskositas bisa dinyatakan dengan persamaan.

Satuan Sistem Internasional (SI) untuk koofisien viskositas adalah Ns/m2 = Pa.s (pascal sekon). Satuan CGS (centimeter gram sekon) untuk koofisien viskositas adalah dyn.s/cm2 = poise (P). Viskositas juga sering dinyatakan dalam sentipoise (cP). 1 cP = 1/100 P.

1 poise = 1 dyn . s/cm2 = 10-1 N.s/m2

Fluida Temperatur (o C) Koofisien Viskositas
Air 0 1,8 x 10-3
20 1,0 x 10-3
60 0,65 x 10-3
100 0,3 x 10-3
Darah (keseluruhan) 37 4,0 x 10-3
Plasma Darah 37 1,5 x 10-3
Ethyl alkohol 20 1,2 x 10-3
Oli mesin (SAE 10) 30 200 x 10-3
Gliserin 0 10.000 x 10-3
20 1500 x 10-3
60 81 x 10-3
Udara 20 0,018 x 10-3
Hidrogen 0 0,009 x 10-3
Uap air 100 0,013 x 10-3

Sumber:

http://www.gurumuda.com/viskositas

 

Fluida yang riil memiliki gesekan internal yang besarnya tertentu yang disebut dengan viskositas. Viskositas ada pada zat cair maupun gas dan pada intinya merupakan gaya gesekan antara lapisan-lapisan yang bersisian pada fluida pada waktu lapisan-lapisan tersebut bergerak satu melewati lainnya. Dengan adanya viskositas, kecepatan lapisan-lapisan fluida tidak seluruhnya sama. Lapisan fluida yang terdekat dengan dinding pipa bahkan sama sekali tidak bergerak (v = 0), sedangkan lapisan fluida pada pusat aliran memiliki kecepatan terbesar. Pada zat cair, viskositas disebabkan akibat adanya gaya-gaya kohesi antar molekul.
Dalam fluida ternyata gaya yang dibutuhkan (F), sebanding dengan luas fluida yang bersentuhan dengan setiap lempeng (A), dan dengan laju (v) dan berbanding terbalik dengan jarak antar lempeng (l). Besar gaya F yang diperlukan untuk menggerakan suatu lapisan fluid dengan kelajuan tetap v untuk luas penampang keping A adalah

F = η A v
l

Dengan viskositas didefinisikan sebagai perbandingan regangan geser (F/A) dengan laju perubahan regangan geser (v/l).

Dengan kata lain dapat dikatakan bahwa :
Makin besar luas keping (penampang) yang bersentuhan dengan fluida, makin besar gaya F yang diperlukan sehingga gaya sebanding dengan luas sentuh (F ≈ A). Untuk luas sentuh A tertentu, kelajuan v lebih besar memerlukan gaya F yang lebih besar, sehingga gaya sebanding dengan kelajuan (F ≈ v).

Hukum Stokes
Viskositas dalam aliran fluida kental sam saja dengan gesekan pada gerak benda padat. Untuk fluida ideal, viskositas η = 0 sehingga kita selalu menganggap bahwa benda yang bergerak dalam fluida ideal tidak mengalami gesekan yang disebabkan fluida. Akan tetapi, bila benda tersebut bergerak dengan kelajuan tertentu dalam fluida kental, maka benda tersebut akan dihambat geraknya oleh gaya gesekan fluida benda tersebut. Besar gaya gesekan fluida telah dirumuskan

F = η A v = A η v = k η v
l l

Koefisien k tergantung pada bentuk geometris benda. Untuk benda yang bentuk geometrisnya berupa bola dengan jari-jari (r), maka dari perhitungan laboraturium ditunjukan bahwa

k = 6 п r

maka

F = 6 п η r v

Persamaan itulah yang hingga kini dikenal dengan Hukum Stokes.

Dengan menggunakan hukum stokes, maka kecepatan bola pun dapat diketahui melalui persamaan (rumus) :

v = 2 r2 g (ρ – ρ0)
9 η

Sumber:

http://www.geofacts.co.cc/2008/10/laporan-viskositas.html

 

Aliran Laminer dan Turbulen

Air yang mengalir, gas juga akan mengalir begitu juga substansi lain yang biasa d sebut fluida, yang disebabkan oleh adanya perbedaan tekanan. Dalam kehidupan sehari2 banyak d jumpai fluida yang mengalir. Air dalam pipa PDAM kemudian keluar melalui keran , air d sungai2, sampai minuman dalam gelas yang diaduk dengan sendok. Kejadian2 seperti itu ada di sekitar kita. Dalam aliran fluida semacam itu terdapat fenomena yang bisa d pelajari. Ada hal2 yang berpengaruh satu sama lain. Jenis zat, kekentalan, kecepatan alir menjadi dasar tema pembicaraan. Berdasarkan karakteristik struktur internal aliran, aliran fluida dapat dibedakan menjadi dua macam yaitu aliran laminer dan turbulen.

Aliran Laminer adalah aliran fluida yang bergerak dengan kondisi lapisan-lapisan (lanima-lamina) membentuk garis-garis alir yang tidak berpotongan satu sama lain. Hal tersebut d tunjukkan oleh percobaan Osborne Reynold. Pada laju aliran rendah, aliran laminer tergambar sebagai filamen panjang yang mengalir sepanjang aliran. Aliran ini mempunyai Bilangan Reynold lebih kecil dari 2300.

laminergambar aliran laminer


Aliran Turbulen
adalah aliran fluida yang partikel-partikelnya bergerak secara acak dan tidak stabil dengan kecepatan berfluktuasi yang saling interaksi. Akibat dari hal tersebut garis alir antar partikel fluidanya saling berpotongan. Oleh Osborne Reynold digambarkan sebagai bentuk yang tidak stabil yang bercampur dalam wamtu yang cepat yang selanjutnya memecah dan menjadi takterlihat. Aliran turbulen mempunyai bilangan reynold yang lebih besar dari 4000.

turbulengambar aliran turbulen

 

Aliran yang mempunyai bilangan reynold antara 2300 – 4000 ada yang menyebut sebagai aliran dalam keadaan transisi. Perubahan dari kondisi

 

Sumber :

http://yudistywn.wordpress.com/2009/12/01/aliran-laminer-dan-turbulen/

Kekonyolan Sehari-hari

–          Orang sudah kelewat kaya, tapi kalau jalan malah pakai pakaian seadanya.

–          Orang sering makan di restoran, tapi makan di warteg merasa nikmat sekali.

–          Sudah tau dilarang belok, malah belok dengan alasan nggak ada polisi.

–          Orang demo harusnya bicara masih ada saja yang mulutnya dijahit.

–          Sudah tau kereta api diatas gerbong ada listriknya, malah didekatin.

–          Manusia itu adalah makhluk sosial yang cendrung untuk berkumpul dan bersama. Tapi malah di kota besar  hidupnya di apartemen hidup menyendiri.

–          Orang lebih banyak membeli barang yang diinginkan, tetapi yang bukan dibutuhkan.

–          Head center semakin kecil semakin mahal.

–          Harga parutan keju yang kecil ukuran sejempol lebih mahal daripada parutan keju yang ukuran normal.

–          Sama-sama sarang burung. Tapi sarang burung walet lebih mahal daripada sarang burung yang lain. Kenapa ?? hehe

 

Demikian kekonyolan yang menurut saya terjadi di seputaran hidup sehari-hari. Terima kasih 😀

Analisa Kejadian Perampokan Bank Kalteng tanggal 23 Februari 2011

Menurut saya perampokan di Bank Kalteng diindikasikan terjadi karena:

1.  Pilihan waktu yang longgar keamanan, karena pada saat jam istirahat.

2.  Dipilih kasir yang terpisah dengan kasir yang lain, yang dirampok adalah kasir yang ada di belakang kantor.

3.  Kasir lalai dengan menempatkan uang yang besar jumlahnya di meja yang harusnya ada di lemari besi.

4. Kasirnya perempuan yang relatif lemah bila di gertak.

5. Satpam tidak curiga dengan orang yang bertransaksi tanpa melepas helm.

6.  Satpam tidak curiga dengan nasabah yang pakai motor atau mobil parkir tapi tidak mematikan mesin.

7.  Satpam tidak curiga dengan orang yang berdiri terlalu lama dekat kasir tanpa melakukan transaksi apa-apa.

8.  Sistem alarm susah untuk dijangkau, sehingga terlambat membunyikan

9.  Pelaku perampokan beruntung karena dapat mengambil uang yang sudah ada di tas tanpa menyusun dulu.

10. Pelaku beruntung karena habis merampok bisa lari menghilang.

 

Yang seharusnya dilakukan untuk mencegah perampokan tersebut:

  1. Uang jumlah besar segera disimpan di lemari besi.
  2. Satpam harus curiga pada orang yang memakai helm, mesin kendaraan tetap hidup walaupun sedang parkir, dan orang yang berdiri tanpa melakukan transaksi.
  3. Lokasi loket khusus harus dijaga.
  4. Alur mobil dan motor harus dijaga sehingga jika ada yang merampok tidak mudah pergi atau kabur dari tempat kejadian.
  5. Kasir khusus  tetap harus ada satpam bersenjata dan tetap ditempat meskipun jam istirahat.

 

Yang seharusnya dilakukan untuk mengidentifikasi masalah tersebut:

  1. Buka rekaman CCTV, lalu komunikasikan dengan kepolisian. Barangkali pelaku dikenal oleh polisi.
  2. Sidik jari dari barang perampok yang tertinggal.
  3. Interogasi saksi mata dan dicocokkan dengan bukti-bukti yang lain sehingga dapat alur kejadiannya.
  4. Melakukan rekonstruksi agar jelas gambar kejadiannya. Karena sebagian ciri-ciri cara kerja perampok sudah dikenal oleh polisi.

 

Sekian analisa yang bisa saya berikan, dengan harapan bisa menambah wawasan untuk mencegah dan menindak lanjuti kejadian yang serupa.

Demikian saya sampaikan agar dapat diterima dengan baik. Terima kasih.